\(\int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\) [1359]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 45, antiderivative size = 219 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 (A b-a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 C \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \]

[Out]

-2*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1
/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/a/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2*C*(cos(1/2*d*x+1/2*c)^2)^(1/
2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/
d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/
2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/a/d/((b+a*cos(d*x+c))/(a+b))^(1/
2)

Rubi [A] (verified)

Time = 0.93 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {4350, 4193, 3944, 2886, 2884, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 (A b-a B) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 C \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*(A*b - a*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(a*d*Sqrt[Cos[c + d*
x]]*Sqrt[a + b*Sec[c + d*x]]) + (2*C*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a +
b)])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + (2*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a
 + b)]*Sqrt[a + b*Sec[c + d*x]])/(a*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3944

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4193

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 4350

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx \\ & = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+B \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx+\left (C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {\left (A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{a}-\frac {\left ((A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{a}+\frac {\left (C \sqrt {b+a \cos (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \\ & = -\frac {\left ((A b-a B) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{a \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (C \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{a \sqrt {b+a \cos (c+d x)}} \\ & = \frac {2 C \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left ((A b-a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{a \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{a \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \\ & = -\frac {2 (A b-a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 C \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 38.83 (sec) , antiderivative size = 60749, normalized size of antiderivative = 277.39 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\text {Result too large to show} \]

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

Result too large to show

Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 6.39 (sec) , antiderivative size = 1514, normalized size of antiderivative = 6.91

method result size
default \(\text {Expression too large to display}\) \(1514\)

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(2*C*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^2*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2
-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)
/(a-b))^(1/2))-2*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2)))*(
-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)/(-((1-cos(d*x+c))^2*csc(d*
x+c)^2-1)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1))^(3/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(3/2)/(a*(1-cos(d*x+c))^2
*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/((a-b)/(a+b))^(1/2)+2*B*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*(
(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)
*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)
^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)/(-((1-cos(d*x+c))^2*csc(d*x+c)^2-1)/((1-cos(d*x+c))^2*csc
(d*x+c)^2+1))^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)/(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*
b*csc(d*x+c)^2-a-b)/((a-b)/(a+b))^(1/2)+2*A*(-((1-cos(d*x+c))^2*csc(d*x+c)^2-1)/((1-cos(d*x+c))^2*csc(d*x+c)^2
+1))^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)
^2-1))^(1/2)*((1-cos(d*x+c))^3*a*((a-b)/(a+b))^(1/2)*csc(d*x+c)^3-((a-b)/(a+b))^(1/2)*(1-cos(d*x+c))^3*b*csc(d
*x+c)^3+EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*(-(a*(1-cos(d*x+c))^2*c
sc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)-(-(a*(1-
cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)
^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a+(-(a*(1-cos(d*x+c))^2*cs
c(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE
(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b-((a-b)/(a+b))^(1/2)*a*(-cot(d*x+c)+csc(d
*x+c))-((a-b)/(a+b))^(1/2)*b*(-cot(d*x+c)+csc(d*x+c)))/a/((a-b)/(a+b))^(1/2)/(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-
(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b))

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sqrt(cos(c + d*x))/sqrt(a + b*sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/sqrt(b*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/sqrt(b*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + b/cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + b/cos(c + d*x))^(1/2), x)